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Abstract. We present a Monte Carlo calculation of the micro-canonical ensemble of the ideal hadron-
resonance gas including all known states up to a mass of about 1.8 GeV and full quantum statistics.
The micro-canonical average multiplicities of the various hadron species are found to converge to the
canonical ones for moderately low values of the total energy, around 8 GeV, thus bearing out previous
analyses of hadronic multiplicities in the canonical ensemble. The main numerical computing method is
an importance sampling Monte Carlo algorithm using the product of Poisson distributions to generate
multi-hadronic channels. It is shown that the use of this multi-Poisson distribution allows for an efficient
and fast computation of averages, which can be further improved in the limit of very large clusters. We
have also studied the fitness of a previously proposed computing method, based on the Metropolis Monte
Carlo algorithm, for event generation in the statistical hadronization model. We find that the use of
the multi-Poisson distribution as proposal matrix dramatically improves the computation performance.
However, due to the correlation of subsequent samples, this method proves to be generally less robust and
effective than the importance sampling method.

1 Introduction

Thebasic assumption of the statistical hadronizationmodel
(SHM) is that, as a consequence of a dynamicalQCD-driven
process, the final stage of a high energy collision gives rise
to the formation a set of colorless massive extended ob-
jects, defined as clusters (or fireballs). They are assumed to
produce hadrons in a purely statistical manner, namely all
multi-hadronic states within the cluster volume and com-
patible with its quantum numbers are equally likely. The
set of equiprobable states with fixed four-momentum and
internal charges (abelian or not) is what is usually called
the micro-canonical ensemble 1. Interactions between sta-
ble hadrons are mostly taken into account by the inclu-
sion of all resonances as independent states [1], which is
the reason of the usual expression, in the SHM, of ideal
hadron-resonance gas [2].

The special motivations for a detailed study of the
micro-canonical ensemble of the ideal hadron-resonance
gas have been extensively discussed in our first paper [3].
They can be shortly summarized as follows.
(1) The need of a tool to hadronize final-state clusters in
particle and heavy ion collisions in the statistical hadroniza-
tion model and test observables which cannot be calculated
analytically.

a e-mail: becattini@fi.infn.it
1 The full micro-canonical ensemble should in principle in-

clude angular momentum and parity conservation. In this work,
as well as in previous literature, angular momentum and parity
are disregarded and the resulting set of states are still defined
as micro-canonical ensemble.

(2)The assessment of the validity of previous calculations in
the canonical ensemble, especially in the analysis of average
multiplicities in high energy elementary collisions [4–6].

The first point is quite clear: if we could compute micro-
canonical averages numerically in a practical way, we would
be able to make predictions on many observables within the
basic framework of the statistical model without invoking
further assumptions or approximations which are needed
to obtain analytical expressions. Furthermore, the avail-
ability of a Monte Carlo integration algorithm opens the
way to event generators with hadronization stage modelled
by SHM. The second point is somehow related to the first.
Indeed, in previous work within SHM, specific assumptions
were invoked in order to allow the use of the canonical en-
semble, which is far easier to handle with regard to both
analytical and numerical calculations. It is then necessary
to verify whether it was sound to calculate multiplicities
in the canonical ensemble by comparing them to those in
the micro-canonical ensemble with the same values of total
mass and volume.

The micro-canonical formalism for the hadron gas and
the relation between micro-canonical and canonical en-
sembles have been developed in a previous paper [3]. In
the present paper we will focus on the numerical analy-
sis; we will discuss the main computational issues and we
will describe two algorithms to sample the micro-canonical
hadron-gas phase space. As has been mentioned above, we
will inspect the differences between micro-canonical and
canonical averages. In this first study, we will only deal with
observables pertaining to particle multiplicities, leaving the
analysis of momentum spectra to further works.
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The micro-canonical ensemble of the hadron gas has
been investigated numerically by Werner and Aichelin [7]
by using a Monte Carlo method based on the Metropo-
lis algorithm. Results on specific observables have recently
been published [8] in a hadron-gas model including fun-
damental multiplets (two meson nonets and baryon octet
plus decuplet). In comparison with these previous works,
we will show calculations for the full hadron gas includ-
ing all known species (more than 250) up to a mass of
about 1.8 GeV and, particularly, we will introduce a new
updating rule for the Metropolis algorithm leading to a
dramatic improvement of its performance in terms of com-
puting time. Moreover, we propose a different Monte Carlo
computing method, based on the importance sampling of
multi-hadronic channel space, which proves to be more ef-
fective than the Metropolis algorithm for the calculation
of averages.

This paper is organized as follows: the basic micro-
canonical formalism is summarized in Sect. 2; the numeri-
cal method to compute the phase space volumes for a given
multi-hadronic channel is discussed in Sect. 3; in Sect. 4 we
describe the importance sampling method which is well
suited to compute averages in the micro-canonical ensem-
ble of the ideal hadron-resonance gas; in Sect. 5 we show
the comparison between micro-canonical and canonical av-
erages; in Sects. 6 and 7 the Metropolis algorithm is studied
in detail; finally, conclusions are summarized in Sect. 8.

2 Micro-canonical partition function

In principle, any average on a given statistical mechanics
ensemble could be calculated from the partition function.
The micro-canonical partition function of the hadron gas
is best defined [3] as the sum over all multi-hadronic states
localized within the cluster |hV 〉 constrained with four-
momentum and abelian (i.e. additive) charge conservation:

Ω =
∑
hV

〈hV |δ4(P − Pop)δQ,Qop |hV 〉 . (1)

where Q = (Q1, . . . , QM ) is a vector of M integer abelian
charges (electric, baryon number, strangeness etc.), P the
four-momentum of the cluster and Pop, Qop the relevant
operators. Provided that relativistic quantum field effects
are neglected and thevolumeof the cluster is large enough to
allow the approximation of finite-volume Fourier integrals
with Dirac deltas, it can be proved [3] that Ω can be written
as a multiple integral:

Ω =
1

(2π)4+M

∫
d4y eiP ·y

∫ +π

−π
dMφ eiQ·φ (2)

× exp


∑

j

(2Jj + 1)V
(2π)3

∫
d3p log(1 ± e−ipj ·y−iqj ·φ)±1


 ,

where qj is the vector of the abelian charges for the jth
hadron species, Jj its spin, V the volume of the cluster; the
upper sign applies to fermions, the lower to bosons. The

integral (3) is more easily calculable in the rest frame of
the cluster where P = (M,0). Unfortunately, an analytical
solution with no charge constraint (the so-called grand-
micro-canonical partition function) is known only in two
limiting cases: non-relativistic and ultra-relativistic (i.e.
with all particle masses set to zero). The full relativistic case
has been attacked with several kinds of expansions [9] but
none of them proved to be fully satisfactory as the achieved
accuracy in the estimation of different kinds of averages
could vary from some percent to a factor 10. Therefore, a
numerical integration of (3) is needed. The most suitable
method is to decompose Ω into the sum of the phase space
volumes with fixed particle multiplicities for each species:

Ω =
∑
{Nj}

Ω{Nj}δQ,
∑

j Njqj
, (3)

{Nj} being a vector of K integer numbers (N1, . . . , NK),
i.e. the multiplicities of all of the K hadronic species. The
set of integers {Nj} is also defined as a channel because it
characterizes a specific decay channel of the cluster. The
general phase space volume Ω{Nj} for the channel {Nj}
obtained from can be written as a cluster decomposition.
Let j be the integer index running over all hadron species,
and {hnj } a partition (relevant to the species j) of Nj in
the multiplicity representation, i.e. a set of integers such
that Nj =

∑Nj

nj=1 njhnj
; let Hj =

∑Nj

nj=1 hnj
and let clj

be the cyclic permutations of the first nlj integers deter-
mined by the partition, with

∑Hj

lj=1 nlj = Nj . Provided
that relativistic quantum field effects are neglected (which
is possible if the cluster linear size is greater than pion
Compton wavelength, 1.4 fm), the phase space volume for
fixed multiplicities reads [3]

Ω{Nj} =
∫

d3p1 . . .d3pN δ4(P − Pf ) (4)

×
∏
j

∑
{hnj

}

(∓1)Nj+Hj (2Jj + 1)Hj∏Nj

nj=1 n
hnj

j hnj !

Hj∏
lj=1

Fnlj
,

where Pf is the sum of all particle four-momenta. The
factors Fnlj

in the equation above are Fourier integrals
over the cluster region with proper volume V :

Fnlj
=

nlj∏
ilj

=1

1
(2π)3

∫
V

d3x e
ix·(pilj

−pclj
(ilj

))
, (5)

and the p’s are the particle momenta. For sufficiently large
V , the integral in (5) tends to a product of Dirac delta
distributions and, if we use this limit in (4), we arrive at
this expression of Ω{Nj}:

Ω{Nj} =


∏

j

∑
{hnj

}
(∓1)Nj+Hj

1∏Nj

nj=1 n
4hnj

j hnj !
(6)

×

 Hj∏

lj=1

V (2Jj + 1)
(2π)3

∫
d3p′

lj




 δ4


P −

Hj∑
j,lj=1

p′
lj


 ,



F. Becattini, L. Ferroni: Statistical hadronization and hadronic micro-canonical ensemble II 227

where, for a set of partitions {hn1}, . . . , {hnK
} for each

of the hadron species, the four-momenta p′
lj

are those of
lumps of particles of the same species j (Hj in number)
with mass njmj and spin Jj .

For sufficiently large volumes, the leading term in (6),
henceforth defined as Ωc

{Nj}, is that with the maximal
power of V , i.e. with Hj = Nj , ∀j. This term corresponds
to the partitions {hnj } = (Nj , 0, . . .), ∀j, namely to one
particle per lump, and reads

Ωc
{Nj} (7)

=
∏
j

V Nj (2Jj + 1)Nj

(2π)3Nj Nj !

∫
d3p1 . . .d3pN δ4

(
P −

N∑
i=1

pi

)
,

where N =
∑

j Nj . This is indeed the phase space volume
in the classical Boltzmann statistics. Therefore, the terms
beyond the leading one (7) in the expansions (4) and (6)
account for the quantum statistics effects. The very same
expression (7) holds as the leading term of the more general
cluster decomposition (4). In fact, the cyclic permutations
clj corresponding to the partition {hnj

} = (Nj , 0, . . .) are
identities, thus implying, according to (5):

Nj∏
lj=1

Fnlj
=

V Nj

(2π)3Nj
. (8)

In the present work, we have used the approximated ex-
pression (6) of (4) to evaluate the phase space volume for
fixed multiplicities. For the considered cluster masses and
volumes (see later on) this approximation is satisfactory
for most observables, taking into account that the lead-
ing term (7) of the cluster decomposition is the same in
both (4) and (6) and that subleading terms give at most
a 10% correction to the leading term.

A nice feature of the cluster decomposition (6) is that
every term of the expansion is an integral just like the clas-
sical phase space volume (7) with lumps replacing particles.
Specifically, (6) can be rewritten as

Ω{Nj} =
∑

{hn1},...,{hnK
}


∏

j

(∓1)Nj+Hj∏Nj

nj=1 n
4hnj

j


Ωc

{Hj} . (9)

Note that the factor
∏Nj

nj=1 hnj
! has been absorbed inΩc

{Hj}
as it takes into account the identity of the lumps. This form
of cluster decomposition shows that in actual numerical
calculations all of the terms can be computed with the
same routine.

As has been mentioned in the introduction, in this pa-
per we are mainly interested in the calculation of quan-
tities relevant to particle multiplicities and not to their
momenta, namely their kinematical state. The average of
an observable O depending on particle multiplicities in the
micro-canonical ensemble can then be written as

〈O〉 =

∑
{Nj} O({Nj})Ω{Nj}δQ,

∑
j Njqj∑

{Nj} Ω{Nj}δQ,
∑

j Njqj

. (10)

Altogether, what we need to calculate in order to evaluate
an average (10) are integrals like (6) and (7). The descrip-
tion of a suitable numerical technique to do that is the
subject of the next section.

3 Numerical calculation
of the phase space volume

In order to calculate efficiently and quickly the phase space
volume for fixedmultiplicitiesΩ{Nj} in (6),wehave adopted
a Monte Carlo integration method proposed by Cerulus and
Hagedorn in the 60’s [9,10] and later employed by Werner
and Aichelin [7]. The method is described in detail in [7].
As we made only slight modifications, we just sketch it
here; a more detailed description is given in Appendix A.
As has already been mentioned, every term in the cluster
decomposition (6) is an integral of the kind (7) and can be
calculated by the same numerical method.

The calculation is carried out in the cluster’s rest frame,
where P = (M,0) and V is the proper volume. The inte-
gral (7) is first written as the product

Ωc
{Nj} =

V NT 3N−4

(2π)3N

∏
j

(2Jj + 1)Nj

Nj !
Φ(M, m1, . . . , mN ) ,

(11)
whereT = M−∑N

i=1 mi is the available total kinetic energy
for the N particles (or lumps), and Φ is an non-dimensional
kinematic integral:

Φ =
1

T 3N−4

∫
d3p1 . . .d3pN δ4

(
P −

N∑
i=1

pi

)
. (12)

After a sequence of variable changes, the function Φ is
rewritten as an integral of a non-dimensional function Υ
of N − 1 variables ri ∈ [0, 1] (see Appendix A):

Φ =
∫ 1

0
dr1 . . .

∫ 1

0
drN−1 Υ (r1, . . . , rN−1) , (13)

which can be estimated through Monte Carlo integration as

Φ
.=

1
NS

NS∑
k=1

Υ (r(k)
1 , . . . , r

(k)
N−1) , (14)

where r
(k)
i are random numbers uniformly distributed in

the interval [0, 1] and NS is the number of samples.
In order to calculate the full cluster decomposition of

the phase space volume, in (9), the above calculation is
repeated for all of the terms. To reduce the number of calls
to the random number generation subroutine, one can take
advantage of rewriting (9) as

Ω{Nj} =
∑

{hn1},...,{hnK
}


∏

j

(∓1)Nj+Hj (2Jj + 1)Hj∏Nj

nj=1 n
4hnj

j hnj !




×V HT 3H−4

(2π)3H
Φ(M, µ1, . . . , µH) , (15)
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Fig. 1. Distribution of Ω{Nj} values computed with a numerical
Monte Carlo integration based on 1000 random samples, along
with gaussian fits, for a cluster of 4 GeV mass and 0.4 GeV/fm3

energy density. Three channels are shown: a π0, π0, π+, π−;
b π0, π0, π+, π+, π−, π−; c η, η, η, η. Top plots refer to the full
quantum statistics calculation while those below to the classical
statistics approximation

where µi are meant to be the masses of the lumps defined
by the partitions {hnj } and H =

∑
j Hj . Since H ≤ N ,

the first H − 1 random numbers, out of N − 1 extracted,
can be used to estimate the Φ integral, according to (14),
for each term in (15).

For NS = 1000 random samples, the accuracy of the
Monte Carlo integration is satisfactory for all channels and
turns out to be of the order of some percent. This may not
be sufficient if one is interested in accurate calculations
of the single channel rates themselves, but is very good
for the estimate of other, more inclusive, averages such as
mean multiplicities, multiplicity distributions etc., in which
the errors on different channels add incoherently (see (10))
and the relative statistical error is therefore greatly reduced
with respect to that on the single term Ω{Nj}. In Fig. 1
we show the gaussian distributions obtained by repeating
10000 times the calculation of Ω{Nj} for three different
channels in a cluster with 4 GeV mass and 0.4 GeV/fm3

energy density.2 The plots on the top row refer to the Ω{Nj}
value calculated in full quantum statistics, according to (6),

2 Henceforth energy density must be understood as that in
the cluster’s rest frame, that is the ratio between mass and
proper volume M/V . The standard value of 0.4 GeV/fm3 has
been chosen and used throughout this paper as it corresponds,
in the thermodynamical limit, to the energy density of a hadron
gas at a temperature of about 160 MeV, which has been de-
termined in previous analyses of particle production in high
energy collisions [11].
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Fig. 2. CPU time needed to calculate the phase space volume
of a channel with N neutral pions in a cluster with mass
N(mπ0 + 500 MeV) and energy density 0.4 GeV/fm3. The full
dots refer to classical statistics and the hollow dots to full
quantum statistics; lines are drawn to guide the eye. The CPU
time has been normalized to a Pentium IV processor with 2 GHz
clock rate

and those on the bottom row in classical statistics, i.e. re-
taining only the leading term (7). It can be seen that the
central values in full quantum statistics are higher than
their classical approximations, as expected for channels
involving identical bosons. The calculation in full quan-
tum statistics with the exact expression (4) for a finite
volume yields results very close to those obtained with the
approximated one, (6). The spread in value of the statisti-
cal error (see resolutions quoted in Fig. 1) is owing to the
different multiplicities and masses of the particles in the
channels. However, this spread is fairly small and stays
well below an order of magnitude so that, in fact, a fixed
number of Monte Carlo samples NS is appropriate to cal-
culate most Ω{Nj}’s with a given accuracy independently
of particle content.

The actual CPU time3 needed for the calculation of
Ω{Nj} with 1000 random samples is reasonably small. This
is shown in Fig. 2 for channels with N neutral pions in a
cluster with mass N(mπ0 + 500 MeV) and energy density
0.4 GeV/fm3. In a full quantum statistics calculation, in-
cluding lumps up to five particles, the CPU time is much
larger because of the extra terms in the cluster decomposi-
tion. The time needed to calculate the integral (7) increases
almost exponentially with the number of particles N at low
N , whereas at N = 11 it features a drop due to a switch in
the numerical method (see Appendix A) and flattens out
thereafter. In quantum statistics, even at high N , there are
many phase space integrals in the cluster decomposition
to be calculated with the same method as for the classi-

3 All CPU times quoted throughout are referred to a personal
computer with Pentium IV processor working at 2 GHz clock
rate, with rated SPECint = 426 and SPECfp = 304
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cal terms at low N , thus the CPU time steadily increases,
though not as steeply as for the classical term alone.

4 Importance sampling
of micro-canonical ensemble

As has been discussed previously, our goal is to develop a
fast and accurate numerical method to calculate averages
like (10) in the micro-canonical ensemble. Being able to
effectively calculate Ω{Nj} for any channel, a brute force
option is to do it for all of them. However, this method
is not appropriate for a system like the hadron gas, be-
cause the actual number of channels is huge. Indeed, with
271 light-flavored hadrons and resonances (those included
in the latest Particle Data Book issue [12]), the number
of channels allowed by energy-momentum conservation is
enormous and it increases almost exponentiallywith cluster
mass (see Fig. 3), involving an unacceptably large comput-
ing time. For instance, the CPU time needed to compute
Ω{Nj} for all of the 23 millions of channels of a cluster with
4 GeV mass is around 400 h. Charge constraints can indeed
reduce significantly the number of allowed channels, yet
not enough. Therefore, the calculation of the phase space
volume of all allowed channels is possible only for very
light clusters, in practice lighter than ≈ 2 GeV. Hence, if a
method based on the exhaustive exploration of the channel
space is not affordable, one has to resort to Monte Carlo
methods, whereby the channel space is randomly sampled.

An estimate of the average (10) can be made by means
of the so-called importance sampling method. The idea of
this method is to sample the channel space (i.e. the set of
integers Nj , one for each hadron species) not uniformly,
rather according to an auxiliary distribution Π{Nj} which
must be suitable to being sampled very efficiently to keep
computing time low, and, at the same time, as similar as
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Fig. 3. Number of allowed channels as a function of cluster
mass in a hadron gas with 271 species and free charges

possible to the distribution Ω{Nj}. The latter requirement
is dictated by the fact that Ω{Nj} is sizeable over a very
small portion of the whole channel space. Hence, if random
configurations were generated uniformly, for almost all of
them Ω{Nj} would have a negligible value, thus a huge
number of samples would be required to achieve a good
accuracy.On the other hand, if samples are drawnaccording
to a distribution similar to Ω{Nj}, little time is wasted
to explore unimportant regions and the estimation of the
average (10) is more accurate. A crucial requirement for
Π{Nj} is not to be vanishing or far smaller than Ω{Nj}
anywhere in its domain in order not to exclude some good
regions from being sampled, thereby biasing the calculated
averages in a finite statistics calculation.

Rewriting (10) as

〈O〉 =

∑
{Nj} O({Nj})

Ω{Nj}
Π{Nj}

Π{Nj}δQ,
∑

j Njqj

∑
{Nj}

Ω{Nj}
Π{Nj}

Π{Nj}δQ,
∑

j Njqj

(16)

makes it apparent that a Monte Carlo estimate of 〈O〉 is

〈O〉 .=

∑M
k=1 O({Nj}(k))

Ω
(k)
{Nj}

Π
(k)
{Nj}

∑M
k=1

Ω
(k)
{Nj}

Π
(k)
{Nj}

, (17)

where {Nj}(k) are samples of the channel space extracted
according to the distribution Π and fulfilling the charge
constraint Q =

∑
j Nj qj .

Provided that M is large enough so that the distri-
butions of both numerator and denominator in (17) are
gaussians (hence the conditions of validity of the central
limit thoerem are met), the statistical error σ〈O〉 on the
average 〈O〉 can be estimated to be (see Appendix B)

σ2
〈O〉 =

1
MΩ2

{[
EΠ

(
O2

Ω2
{Nj}

Π2
{Nj}

)
− 〈O〉2Ω2

]

+〈O〉2
[
EΠ

(
Ω2

{Nj}
Π2

{Nj}

)
− Ω2

]

− 2〈O〉
[
EΠ

(
O

Ω2
{Nj}

Π2
{Nj}

)
− 〈O〉Ω2

]}
, (18)

where EΠ stands for the expectation value relevant to the
Π distribution. If Ω{Nj} = Π{Nj}, the above expression
reduces to the familiar form:

σ2
〈O〉 =

1
M

(
〈O2〉 − 〈O〉2

)
. (19)

The estimator (17) has a bias unless Ω{Nj} = Π{Nj} and
this confirms the necessity to find a distribution as similar
as possible to Ω{Nj}. However, the bias, whose general
expression is derived in Appendix B, scales with 1/M and,
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therefore, for large M , can be neglected with respect to
the statistical error scaling with 1/

√
M .

A possible option for Π{Nj} is the product of K (as
many as particle species) Poisson distributions:

Π{Nj} =
K∏

j=1

exp[−νj ]
ν

Nj

j

Nj !
, (20)

which will be henceforth referred to as the multi-Poisson
distribution or MPD. This distribution can indeed be sam-
pled very efficiently and it is the actual multi-species multi-
plicity distribution in the grand-canonical ensemble, in the
limit of Boltzmann statistics. Although this distribution is
not the limit of Ω{Nj} in the thermodynamic limit, i.e. for
large mass and volume of the clusters [13] (see next sec-
tion), the similarity between MPD and the corresponding
micro-canonical distribution should be sufficient to effec-
tively remove the region of the channel space where Ω{Nj}
is practically vanishing. The mean values of the MPD are
free parameters to be set in order to maximize the similar-
ity between MPD and Ω{Nj}. The most sensible choice is to
enforce as mean values the mean hadronic multiplicities cal-
culated in the grand-canonical ensemble with volume and
mean energy equal to the volume and mass of the clus-
ter. Indeed, unlike the higher order moments, the mean
multiplicities, or first order moments of the multi-species
distribution, in the micro-canonical ensemble converge to
the corresponding values in the grand-canonical ensemble
in the thermodynamical limit, as it will be shown later on.
These can be calculated in the Boltzmann statistics by the
well known formula

νj =
(2Jj + 1)V

2π2 m2
jTK2

(mj

T

)∏
i

λ
qji

i , (21)

where V is the cluster’s volume, T is the temperature
and λi the fugacity corresponding to the charge Qi. Tem-
perature and fugacities are determined by enforcing the
grand-canonical mean energy and charges to be equal to
the actual mass M and charges Q of the cluster:

M = T 2 ∂

∂T

∑
j

zj(T )
∏

i

λ
qji

i ,

Q =
∑

j

qjzj(T )
∏

i

λ
qji

i , (22)

with

zj(T ) =
(2Jj + 1)V

2π2 m2
jTK2

(mj

T

)
. (23)

Equations (22) are just the saddle-point equations for the
asymptotic expansion of themicro-canonical partition func-
tion, showing that the micro-canonical ensemble can be
approximated by the grand-canonical ensemble for large
masses and volumes [3].

It should be stressed that (21) is just a particular choice
of the νj ’s in (20), which is by no means compelling. The
only purpose andmerit of the νj ’s is tomake themultiplicity
distribution Π{Nj} in (20) as close as possible to Ω{Nj} to

speed up the computation. If a choice different from (21)
can do a better job, this could and should be retained. For
the same reason, it makes little sense to use the precise
canonical expressions of the νj ’s corrected for quantum
statistics, because at the energy density we are interested
in, this is just a correction. Altogether, the means in (21)
turn out to be satisfactory for most practical purposes.

If cluster charges are unconstrained, only the first of
the equations (22) is needed and fugacities can be dropped
(i.e. they are taken to be 1) from (21). On the other hand,
if cluster charges are fixed, among all configurations drawn
from MPD, only those fulfilling charge conservation should
be retained and considered for micro-canonical average cal-
culations in (17). This preselection of random samples sig-
nificantly affects the overall efficiency of the algorithm, be-
cause the acceptance rate of samples extracted from MPD
becomes small, and it is increasingly smaller for larger
clusters. The acceptance rate can be improved by resort-
ing to a conditional probability decomposition technique,
described in the next section.

Summarizing, the procedure to estimate 〈O〉 in the im-
portance sampling method for a given cluster is as follows:
(1) calculate T and νj ’s according to (22), (23) and (21);
(2) sample the MPD (20) some large number of times and
for each sample {Nj} compute numerically the integral
Ω{Nj} by the method described in Sect. 3 with a suitable
number of Monte Carlo extractions NS ;
(3) calculate the sums in (17) and estimate the statistical
error according to (18).

An improvement in the accuracy of the estimation of 〈O〉
can be obtained by drawing random samples in an extended
space instead of calculating Ω{Nj} for each channel at each
step. The idea is to perform the Monte Carlo importance
sampling in the variables

{N1, . . . , NK |r1, . . . , rN−1} , with N =
∑

j

Nj , (24)

at the same time, instead of calculating Ω{Nj} separately
for each extracted sample in {Nj}. We first note that (15)
can be further rewritten as, by using (13),

Ω{Nj} =
∑

{hn1},...,{hnK
}


∏

j

(∓1)Nj+Hj (2Jj + 1)Hj∏Nj

nj=1 n
4hnj

j hnj !




×
∫ 1

0
dr1 . . .

∫ 1

0
drH−1

V HT 3H−4

(2π)3H
Υ (r1, . . . , rH−1)

=
∫ 1

0
dr1 . . .

∫ 1

0
drN−1

×
∑

{hn1},...,{hnK
}


∏

j

(∓1)Nj+Hj (2Jj + 1)Hj∏Nj

nj=1 n
4hnj

j hnj !




×V HT 3H−4

(2π)3H
Υ (r1, . . . , rH−1)

≡
∫ 1

0
dr1 . . .

∫ 1

0
drN−1 Ψ({Nj}|{ri}) , (25)
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where {ri} ≡ (r1, . . . , rN−1). In practice, each term in the
sum has been multiplied by 1 =

∫ 1
0 drH . . .

∫ 1
0 drN−1, with

H ≤ N and, doing so, we have been able to take out
the integration on the ri’s. The Monte Carlo estimate of
Ω{Nj} as expressed by the last integral in (25) can then be
written as

Ω{Nj}
.=

1
NS

NS∑
k=1

Ψ(r(k)
1 , . . . , r

(k)
N−1) , (26)

where r
(k)
i are random numbers uniformly distributed in

the interval [0, 1]. Likewise, looking at (10) and (25), the
estimator of the mean value of the observable O in this
extended sampling space can be rewritten as

〈O〉 .=

∑M ′

k=1 O({Nj}(k))
Ψ({Nj}(k)|{ri}(k))

Π
(k)
{Nj}∑M ′

k=1
Ψ({Nj}(k)|{ri}(k))

Π
(k)
{Nj}

. (27)

For a fixed number of calls to the random number generator,
this method optimizes the accuracy because most of them
are spent to calculate Ω{Nj} for the most probable channels,
i.e. those for which an improvement in accuracy is more
rewarding, whereas, in the previous method, Ω{Nj} was
calculated with a fixed number of random samples NS

regardless of its size. More specifically, if in the previous
approach the NS×M computation of the function Ψ in (25)
were performed, about the same CPU time is needed to
calculate M ′ = NS ×M random samples in (27), but with
a sizeable reduction of the statistical error on 〈O 〉.

In our calculation, resonances whose width exceeds
1 MeV are handled as particles with a distributed mass. For
each random sample, the function Ψ in (25) is calculated by
randomly drawing masses from a relativistic Breit–Wigner
distribution for each resonance:

BW(m2)dm2 ∝ 1
(m2 − m2

0)2 + Γ 2m2
0

dm2 . (28)

The mass range is symmetric around the central value m0
with half-width min{2Γ, mcut} where mcut is the minimal
mass allowed by the known decay channels of the reso-
nance. If the sum of the extracted masses of particles and
resonances exceeds the cluster mass, the function Ψ is set
to zero.

5 Comparison between micro-canonical
and canonical ensemble

The importance sampling method with MPD provides
a suitable technique to calculate averages in the micro-
canonical ensemble. In this section we will mainly show
numerical results on the difference between averages in the
micro-canonical and canonical ensemble.

We have calculated average multiplicities in a hadron
gas including 271 light-flavored hadron species up to a mass

of about 1.8 GeV quoted in the 2002 Particle Data Book
issue [12], for completely neutral clusters (Q = 0) and pp-
like clusters, i.e. with net electric charge Q = 2, net baryon
number B = 2 and vanishing net strangeness. The energy
density in the rest frame of the cluster M/V has been set
to 0.4 GeV/fm3, corresponding, in the thermodynamical
limit at vanishing chemical potentials, to the temperature
value of about 160 MeV found in analyses of particle multi-
plicities in high energy collisions [11]. No extra strangeness
suppression factor has been used here, as we are just in-
terested in a comparison between calculated multiplicities
in two different ensembles.

Whilst the energy density was kept fixed, the mass has
been varied from 2 to 14 GeV for a neutral cluster and from
4 to 14 GeV for pp-like clusters in steps of 2 MeV. For each
mass, 107 random samples fulfilling charge conservation
(i.e. passing charge preselection) have been drawn from
the MPD.

In order to improve the performance of the algorithm
and decrease the rejection rate at the preselection stage,
we have implemented a multi-step extraction procedure
taking advantage of well known properties of the Poisson
distribution. Instead of extracting all particle multiplici-
ties independently from Poisson distributions, we extracted
first the number of baryons NB and antibaryons NB̄ from
two Poisson distributions, with means equal to the sums of
all baryon and antibaryon means respectively, and accept
the event only if NB − NB̄ = B. Indeed, denoting by πj a
single-species Poisson distribution, the MPD constrained
with charge conservation can be written as

K∏
j=1

πj(Nj) δ∑
j Njqj ,Q

=
∏
bar

πj(Nj)
∏

antibar

πj(Nj)
∏

mesons

πj(Nj) δ∑
j Njqj ,Q

= πB(NB)πB̄(NB̄)

×P (N1, N2, . . . |NB)P (N1̄, N2̄, . . . |NB̄) (29)

×
∏

mesons

π(Nj) δNB−NB̄ ,B δ∑
j NjSj ,S δ∑

j NjQj ,Q .

Here the probability distribution
∏

bar π(Nj) of having
given baryon multiplicities has been decomposed into the
product of a Poisson distribution πB for the overall baryon
multiplicity NB and the conditional probability
P (N1, N2, . . . |NB) of having the same set of baryon mul-
tiplicities provided that their sum is NB ; similarly for an-
tibaryons. The P distribution is actually a multinomial dis-
tribution:

P (N1, N2, . . . |NB) ∝ NB !
∏
j

ν
Nj

j

Nj !
, (30)

where the νj are given by (21). Once all baryon and an-
tibaryon multiplicities have been extracted according to
the multinomial distributions, which can be sampled as
quickly as Poisson’s, the same procedure is carried out for
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strange mesons. Since strange and antistrange mesons are
independent of the previous baryon extraction, the num-
ber of strange mesons NS and antistrange mesons NS̄ are
extracted according to a Poisson distribution subject to
the requirement that NS − NS̄ = S − SB , where SB is
the net overall strangeness carried by the previously ex-
tracted baryons. If NS and NS̄ fulfill the above condition,
strange and antistrange meson multiplicities are extracted
from a multinomial distribution, otherwise the event is re-
jected and the whole extraction procedure gets back to
the very beginning, i.e. by randomly sampling baryon and
antibaryon numbers. Likewise, the number of charged non-
strangemesons and their antiparticles is extracted and, pro-
vided that charge conservation is fulfilled, their individual
multiplicities are determined. Finally, the multiplicities of
completely neutral mesons, which do not affect the total
charges, are extracted. The advantage of this method over
that based on straight multi-Poisson sampling can be more
easily understood in terms of the rejection rate. In fact,
the number of rejected channels {Nj} out of those sampled
because of the charge constraints should be the same in
both methods as they are drawn from the same distribu-
tion, i.e. the MPD. Nevertheless, in the latter multi-step
method, a single rejection of a channel on average does
not require K (as many as the number of hadron species)
extraction from a Poisson distribution: it may well occur
at the first stage of baryon number conservation, with only
one extraction from a Poisson distribution or later, with
a number of sampled Poisson or multinomial distributions
which is still less than K. The actual gain in CPU time
may be dramatic, especially for high mass clusters, where
the number of allowed channels is huge. For instance, for
a pp-like cluster of 14 GeV, we have estimated a ratio of
0.025 between the average CPU time needed to extract a
channel with proper charges in the multi-step improved
method and in the original method.

Altogether, the actual CPU time needed to generate
107 accepted samples (i.e. the statistics relevant to the
plots in Figs. 4, 5) of multi-hadronic channels and calculate
average multiplicities in the importance sampling method
for a neutral 4 GeV cluster at 0.4 GeV/fm3 energy density
is about 4.6 102 s, i.e. less than 8 min.

The canonical average multiplicities to be compared
with the micro-canonical ones have been calculated by
determining first the temperature corresponding to the
saddle-point equation [3]:

M − T 2 ∂

∂T
log Z(Q, T ) = 0 , (31)

where

Z(Q, T ) =
1

(2π)3

∫ +π

−π
d3φ eiQ·φ

× exp


∑

j

(2Jj + 1)V
(2π)3

×
∫

d3p log(1 ± e−
√

p2+m2
j/T−iqj ·φ)±1

]
. (32)
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Fig. 4. Relative difference between micro-canonical and canon-
ical average primary multiplicities of mesons (〈Nj〉micro −
〈Nj〉can)/〈Nj〉can for completely neutral clusters with mass 4,
8, 12 GeV . The error bars indicate the statistical error of the
importance sampling Monte Carlo computation. Connecting
lines are drawn to guide to eye
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Fig. 5. Relative difference between micro-canonical and canon-
ical average primary multiplicities of baryons (〈Nj〉micro −
〈Nj〉can)/〈Nj〉can for completely neutral clusters with mass 4,
8, 12 GeV. The error bars indicate the statistical error of the
importance sampling Monte Carlo computation. Connecting
lines are drawn to guide to eye

is the canonical partition function; as usual, the upper sign
applies to fermions, the lower to bosons. Then, multiplici-
ties have been calculated according to the known expression
in the canonical ensemble [5]:
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Fig. 6. Relative difference between micro-canonical and canon-
ical average primary multiplicities of mesons (〈Nj〉micro −
〈Nj〉can)/〈Nj〉can for pp-like clusters with mass 4, 8, 12 GeV.
The error bars indicate the statistical error of the importance
sampling Monte Carlo computation. Connecting lines are drawn
to guide to eye

〈Nj〉 (33)

=
∞∑

n=1

(∓1)n+1 (2Jj + 1)V
2π2n

m2
jTK2

(nm

T

) Z(Q − nqj)
Z(Q)

,

where terms in the series beyond n = 1 account for quan-
tum statistics effects and are in fact important only for
pions at the usually found temperature values of 160–
180 MeV. As for the micro-canonical ensemble, resonances
whose width exceeds 1 MeV have been considered as free
hadrons with a mass distributed according to a relativistic
Breit–Wigner distribution.

The relative difference between micro-canonical and
canonical average for hadrons belonging to basic SU(3)
multiplets and three different cluster masses are shown in
Figs. 4–8. At a mass of 4 GeV, the deviation is significant
and shows a considerable variation as a function of the
species. In neutral clusters, mesons and baryons feature
a different behavior: whilst micro-canonical multiplicities
of mesons are higher than the corresponding multiplicity
in the canonical ensemble, those of baryons are lower. In
pp-like cluster, on the other hand, the general behavior is
not as simple; different mesons show different signs of the
difference and there are even oscillations of it going from
low to high mass clusters. On the other hand, it is evident
that already at 8 GeV of mass, where the total primary
multiplicity of particles is around eight (see Table 2), all
differences between the micro-canonical and canonical en-
semble do not generally exceed 20% and further shrink to
about 10% at 12 GeV.
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Fig. 7. Relative difference between micro-canonical and canon-
ical average primary multiplicities of baryons (〈Nj〉micro −
〈Nj〉can)/〈Nj〉can for pp-like clusters with mass 4, 8, 12 GeV.
The error bars indicate the statistical error of the importance
sampling Monte Carlo computation. Connecting lines are drawn
to guide to eye
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Fig. 8. Relative difference between micro-canonical and canon-
ical average primary multiplicities of antibaryons (〈Nj〉micro −
〈Nj〉can)/〈Nj〉can for pp-like clusters with mass 4, 8, 12 GeV.
The error bars indicate the statistical error of the importance
sampling Monte Carlo computation. Connecting lines are drawn
to guide to eye
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Table 1. Fitted parameters temperature, volume and extra strangeness suppression parameter (γS

or the mean value of produced strange quark pairs out of the vacuum 〈ss̄〉) in elementary collisions
in the canonical analysis of hadron abundances. The canonical fit assumes the equivalence, as far
as particle multiplicities are concerned, between the set of actual clusters and one global cluster [6]
whose resulting mean mass is quoted in the last column. Note that e+e− → cc̄ and e+e− → bb̄ events,
where heavy-flavored hadrons are emitted, have been excluded to estimate 〈M〉 in e+e− collisions

Collision
√

s (GeV) Reference T (MeV) V (fm3) γS or 〈ss̄〉 〈M〉 (GeV)
K+p 11.5 [6] 176.9 ± 2.6 8.12 ± 0.83 〈ss̄〉 = 0.347 ± 0.020 6.51
K+p 21.7 [6] 175.8 ± 5.6 12.0 ± 2.4 〈ss̄〉 = 0.578 ± 0.056 8.47
π+p 21.7 [6] 170.5 ± 5.2 16.7 ± 3.1 〈ss̄〉 = 0.734 ± 0.049 8.23
pp 17.2 [14] 187.2 ± 6.1 6.79 ± 1.6 〈ss̄〉 = 0.381 ± 0.021 7.74
pp 27.4 [6] 162.4 ± 5.6 25.5 ± 1.8 〈ss̄〉 = 0.653 ± 0.017 9.67
e+e− 14 [6] 167.3 ± 6.5 15.9 ± 4.1 γS = 0.795 ± 0.088 6.08
e+e− 22 [6] 172.5 ± 6.7 15.9 ± 4.8 γS = 0.767 ± 0.094 8.12
e+e− 29 [6] 159.0 ± 2.6 33.1 ± 4.0 γS = 0.710 ± 0.047 9.28
e+e− 35 [6] 158.7 ± 3.4 33.7 ± 5.2 γS = 0.746 ± 0.040 9.54
e+e− 43 [6] 162.5 ± 8.1 29.0 ± 9.2 γS = 0.768 ± 0.065 9.99
e+e− 91.25 [11] 159.4 ± 0.8 52.4 ± 2.2 γS = 0.664 ± 0.014 16.0
pp̄ 200 [11] 175 ± 11 35 ± 14 γS = 0.491 ± 0.044 21.6
pp̄ 546 [11] 167 ± 11 65 ± 27 γS = 0.526 ± 0.044 28.7
pp̄ 900 [11] 167.6 ± 9.0 � 77 γS = 0.533 ± 0.054 34.8

Furthermore, these differences depend only weakly on
the energy density, as shown inFig. 9.We can conclude that,
as a rule of thumb, the canonical ensemble is a good approx-
imation of the micro-canonical one for masses � 8 GeV at
energy densities between 0.1 and 0.9 GeV/fm3 with quan-
tum numbers not greater than that of an elementary col-

Table 2. Mean multiplicity 〈N〉 and dispersion D of the micro-
canonical and canonical multiplicity distribution for neutral
and pp-like clusters as a function of the mass. Also quoted
is the corresponding temperature in the canonical ensemble
obtained from (31)

Neutral cluster
Micro-canonical Canonical

M (GeV) 〈N〉 D 〈N〉 D T (MeV)
2 2.43 0.63 1.96 1.74 175.3
4 4.45 1.01 4.08 2.45 169.3
6 6.53 1.24 6.17 2.93 166.3
8 8.61 1.43 8.27 3.29 164.6
10 10.67 1.59 10.38 3.58 163.5
12 12.76 1.75 12.46 3.90 162.8
14 14.84 1.89 14.56 4.15 162.2

pp-like cluster
Micro-canonical Canonical

M (GeV) 〈N〉 D 〈N〉 D T (MeV)
4 3.87 0.81 3.63 1.33 142.1
6 6.04 1.08 5.76 2.05 152.5
8 8.20 1.30 7.90 2.59 156.1
10 10.35 1.49 10.04 3.02 157.8
12 12.48 1.66 12.17 3.40 158.7
14 14.60 1.82 14.27 3.73 159.2
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Fig. 9. Relative difference between micro-canonical and canon-
ical average primary multiplicities of π0, p and Ω (〈Nj〉micro −
〈Nj〉can)/〈Nj〉can for a neutral cluster with mass of 6 GeV as a
function of energy density. The error bars indicate the statisti-
cal error of the importance sampling Monte Carlo computation.
Connecting lines are drawn to guide to eye

liding system. Provided that the further assumption of the
equivalence between the actual set of clusters and an equiv-
alent global cluster (EGC) holds [6], this result justifies the
use of the canonical ensemble in the analysis of particle
multiplicities in pp, e+e− and other high energy collisions.
Indeed, the mean masses of the EGC corresponding to the
actually fitted temperatures and volumes, shown in Ta-
ble 1, turn out to be sufficiently large for most collisions,
with the likely exception of K+p at

√
s = 11.5 GeV and

e+e− at
√

s = 14 GeV where the mean mass is lower than
7 GeV. At

√
s � 20 GeV, the mean mass is larger than
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Fig. 10. Relative difference between micro-canonical and
canonical average primary multiplicities of π0 (〈Nj〉micro −
〈Nj〉can)/〈Nj〉can for a completely neutral cluster and in a
pion gas as a function of cluster mass at an energy density
of 0.4 GeV/fm3. The error bars indicate the statistical error of
the importance sampling Monte Carlo computation. Connect-
ing lines are drawn to guide to eye

8 GeV, implying that the canonical ensemble is a good ap-
proximation.

The quick convergence of micro-canonical average mul-
tiplicities to canonical ones in a hadron gas is favored by
the large number of available degrees of freedom. From
a mathematical point of view, a large number of degrees
of freedom makes the saddle-point expansion converging
faster. In physical terms, there are more ways to conserve
energy and momentum in a system with a larger num-
ber of particle species, so that fulfilling these constraints
become less important earlier than in a system with few
degrees of freedom. This is demonstrated in Fig. 10 where
the relative difference between neutral pion multiplicity
in micro-canonical and canonical ensemble is shown for a
completely neutral pion gas and for a full hadron gas as a
function of cluster mass.

The micro-canonical average multiplicities of most had-
rons, to a good approximation, increase linearly as a func-
tion of cluster mass, for fixed energy density, starting from
M � 3 GeV. On the other hand, particles with large charge
content (such as Ω) show a stronger dependence on mass,
as shown in Fig. 11, over the mass range appropriate for
micro-canonical and canonical calculations.

We have also compared the overall primary multiplic-
ity distributions in the two ensembles. The multiplicity
distribution in the micro-canonical ensemble has been de-
termined by taking δN,

∑
j Nj

as observable in (10) and (16)
and performing an importance sampling Monte Carlo cal-
culation. The multiplicity distribution in the canonical en-
semble has been determined by the same method, that
is extracting particle numbers from the MPD and weigh-
ing each event fulfilling charge conservation with the ratio
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Fig. 11. Micro-canonical average primary multiplicities of π0,
p, Ω and of all hadron species (h) in a completely neutral
cluster as a function of cluster mass at an energy density of
0.4 GeV/fm3. The error bars indicate the statistical error of
the importance sampling Monte Carlo computation. Lines are
drawn to guide to eye

between the actual multi-species multiplicity distribution
and the MPD. The former reads (see Appendix C)

P ({Nj}) (34)

=
1

Z(Q)



∏
j

∑
{hnj

}

(∓1)Nj+Hj

Nj∏
nj=1

n
hnj

j hnj !

z
Hj

j(nj)


 δQ,

∑
j Njqj

,

where the {hnj
}, as usual, denote partitions, and

zj(nj) =
(2Jj + 1)V

(2π)3

∫
d3p e−nj

√
p2+m2

j/T . (35)

For T ≈ 160 MeV, only the leading poissonian terms in the
distribution (35) corresponding to {hnj } = (N, 0, . . .) can
be retained for all particles except pions.

The comparison between the multiplicity distributions
are shown in Figs. 12 and 13 for neutral and pp-like clusters
respectively. It can be seen that the mean values tend to get
closer as mass increases, whilst the dispersion is lower in
the micro-canonical than in the canonical ensemble, where
the distribution is almost poissonian. This remarkable ef-
fect on particle number fluctuation is owing to the overall
energy-momentum constraint causing a global correlation
in particle production. The ratio of the dispersion to the
square root of the mean (i.e. the dispersion of a Poisson
distribution) tends to a factor 1/2 in the thermodynamical
limit (see Fig. 14), thus showing that the micro-canonical
ensemble is not equivalent to the grand-canonical ensemble
with respect to particle number fluctuations. We are not
currently aware of a simple reason of this fact.

Because of the persistence of the shape difference be-
tween multiplicity distributions in the two ensembles, the
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Fig. 12. Comparison between micro-canonical (solid) and
canonical (dashed) overall primary multiplicities distribution
in neutral clusters of four different masses at an energy density
of 0.4 GeV/fm3
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Fig. 13. Comparison between micro-canonical (solid) and
canonical (dashed) overall primary multiplicities distribution
in a pp-like cluster of four different masses at an energy density
of 0.4 GeV/fm3

number of channels sampled with the MPD whose weight is
much larger than their corresponding micro-canonical one
increases with total mean multiplicity, hence with cluster’s
mass (at fixed energy density). This is the reason of the
slightly increasing statistical error on average multiplicities
and multiplicity distributions for increasing cluster mass
seen in Figs. 4, 5, 6, 7, 8, 12 and 13. One could remedy
this and speed up micro-canonical calculations for very
large clusters by changing the sampling distribution. For
instance, instead of using a MPD to sample individual
species numbers, the total number of particles can be first
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Fig. 14. Ratio between the dispersion of the micro-canonical
multiplicity distribution and the square root of its mean in
neutral (top) and pp-like (bottom) clusters as a function of
mass at an energy density of 0.4 GeV/fm3. Lines are drawn to
guide the eye

drawn from a gaussian distribution with variance 1/4 of
the sum of all hadron primary multiplicities as estimated in
the canonical ensemble; then, the number of baryons NB ,
strange mesons NS , charged non-strange mesons NQ, neu-
tral mesons N0 and their respective number of antiparticles
could be sampled from a multinomial distribution:

P = N !
7∏

i=1

ξNi
i

Ni!
. (36)

where i = B, B̄, S, S̄, Q, Q̄, 0 and ξi are the sums of all νj

functions in (21) of particles belonging to the same class
i. Finally, once the multiplicities of each class Ni fulfilling
conservation laws have been extracted, individual particle
multiplicities could be determined for each class in turn by
using again multinomial distributions.

6 The Metropolis algorithm

The importance sampling method allows one to calculate
averages like (10) in single Monte Carlo runs quite straight-
forwardly and can be used as an event generator if events
are reweighted, as we have seen, by a factor Ω{Nj}/Π{Nj}.
If one needs to sample Ω{Nj} directly without reweighting
the events, different methods should be considered. A first
possibility is a rejection method, but it can be soon real-
ized that it is unfit for the problem we are dealing with. In
fact, for this method to be effective, one needs a covering
function F ({Nj}) (i.e. a function of the channel such that
F ({Nj}) > Ω{Nj} ∀{Nj}), which can be sampled very effi-
ciently and as close as possible to the Ω{Nj}. Such a function
is hard to find because Ω{Nj} is not smooth in its domain;
strong variations of the phase space volume may occur by
changing just one particle. We have seen that the MPD is
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likely to be similar to our target distribution, but in order
to be a covering function, it should be rescaled by a factor
c such that cΠ{Nj} > Ω{Nj} ∀{Nj}. However, to estimate
c, one ought to evaluate Ω{Nj} for all channels and this is
just what cannot be afforded. A general method to sample
complex multi-dimensional distributions is the Metropo-
lis algorithm [15], which has been applied to the specific
problem of numerical calculations of the multi-hadronic
micro-canonical ensemble by Werner and Aichelin [7]. In
this work, we will show that this method can be further
improved in speed and accuracy and, at the same time,
that great care is needed in handling it, especially when
assessing the equilibrium conditions.

The Metropolis algorithm prescribes the implementa-
tion of a random walk in the channel space on the basis
of acceptance or rejection of proposed transitions from the
current position. After some number of steps, the proba-
bility of visiting a given point is proportional to the target
distribution; otherwise stated, the points in the random
walk are actual samples of the target distribution (in our
case Ω{Nj}), and they can be stored as generated events.
We will now discuss more in detail how this comes about.
In a general random walk, the probability Pm(t) of visiting
a state m (i.e. a channel or multi-hadronic configuration)
at the tth step evolves according to the master equation

Pm(t + 1) − Pm(t) (37)

=
∑

n

Pn(t)w(n → m) − Pm(t)w(m → n) ,

where w(n → m) is the probability of transition from the
state n to the state m. At the equilibrium

Pm(t + 1) = Pm(t) , ∀m . (38)

This occurs if (a sufficient but not necessary condition)

Pn(t)w(n → m) = Pm(t)w(m → n) , ∀n, m . (39)

If we want the probabilities Pm to be proportional to a given
target distribution f(m), so that the number of times the
state m is visited from some step t onwards is proportional
to f(m), we have to enforce the condition

w(n → m)
w(m → n)

=
f(m)
f(n)

. (40)

Provided that the above equation is fulfilled, the choice
of a set of transition probabilities w (a so-called updating
rule), is free. The only requirement is that every point
can be reached from any point in a finite number of steps
with non-vanishing probability (ergodicity condition), oth-
erwise there would be unaccessible regions even though
f = 0 therein. Although any choice of the w’s is in prin-
ciple allowed, some are worthier. Indeed, the transition
probabilities w govern the dynamical behavior of the ran-
dom walk and, particularly, how fast the system gets to the
equilibrium condition (38) after a transient. This is owing
to the fact that, in general, the random walk starts from
states which are not random samples of the target distribu-
tion, so that Pm(0) = f(m). A good choice of the w’s will

keep the relaxation time Trel, defined as the number of steps
needed to get sufficiently close to the equilibrium value, to
a minimum, thereby making event generation faster.

In general, the transition probability can be decom-
posed into a proposal probability T (proposal matrix ), i.e.
the probability of considering a given transition, and the
conditional probability A of accepting it once it has been
proposed. In symbols

w(n → m) = T (n → m)A(n → m) . (41)

Starting from a non-equilibrium situation, a physical sys-
tem reaches equilibrium earlier if transition probabilities
are larger. Likewise, in the Metropolis algorithm, the re-
laxation time is small if the w(n → m) are large; in other
words, if w(n → n) is small taking into account the nor-
malization condition:∑

m

w(n → m) = 1 . (42)

For the transition probabilities to states different from the
current state to be large, the acceptance matrix should be
as large as possible for m = n once the proposal matrix is
known. There is indeed an optimal choice for A which reads

A(n → m) = min
{

1,
f(m)T (m → n)
f(n)T (n → m)

}
. (43)

This choice maximizes w(n → m) if n = m [16] and fulfills
the condition (40). The next problem is to choose a good
proposal matrix. The issue is discussed in detail in [16] and
the conclusion is that T (n → m) � f(m), i.e. the proposal
matrix should be an easy-to-sample distribution as close as
possible to the target distribution f(m). This can be easily
understood by taking the limiting case (which, if possible,
would make the Metropolis algorithm unnecessary):

T (n → m) = f(m) . (44)

In this case, the relaxation time would be zero: the start-
ing point, as well as all other points in the random walk,
would be sampled from the target distribution itself and
any transition would be accepted because A(n → m) = 1
according to (43) and (44). While the condition (44) cannot
be obtained in practice (the Metropolis algorithm would
be unnecessary in that case), one can try to get as close as
possible to it. From what we have seen in Sect. 4 about im-
portance sampling, it can be argued that the MPD in (20)
would be a good proposal matrix and could also be used
to pick the starting point in the Metropolis random walk.
We will see the benefits of the use of the MPD more in
detail in the next section.

A drawback of the Metropolis algorithm is that, unlike
in the importance sampling method, different samples (i.e.
steps in the random walk) are not independent. This can
be easily understood reminding that proposed transitions
may be rejected, so that a point may appear several times
in a row in the random walk. Hence, there is a finite pos-
itive statistical correlation between the values of physical
observables at different steps and this gives rise to an in-
crease of the overall uncertainty in the estimate of averages



238 F. Becattini, L. Ferroni: Statistical hadronization and hadronic micro-canonical ensemble II

with respect to the case of independent samples. The fact
that different events are correlated may render the use of
the Metropolis algorithm not appropriate in some appli-
cations. However, in the problem of high energy collision
event simulation, where one has to hadronize many clusters
with different masses in each event, this is not an issue;
in this case, a single Metropolis random walk must be run
for each cluster, and only one sample, representative of
its micro-canonical ensemble, drawn after equilibrium has
been reached.

The Metropolis algorithm can be used to estimate the
average of an observable like (10) in the micro-canonical
ensemble of a single cluster by taking a sufficiently large
number of steps (i.e. � Trel) in one random walk and cal-
culating

〈O〉 .=
∑M

k=1 O(k)

M
, (45)

where M is the total number of steps and O(k) the actual
value of the observable O at kth step. A nice feature of
the Metropolis algorithm is that, unlike in the importance
sampling method, there is no need of overall normalization
when estimating 〈O〉 (compare (45)with (17)).On the other
hand, as already emphasized, the values of O at different
steps are correlated. The statistical error on 〈O〉 in (45)
can be estimated as (see Appendix D):

σ〈O〉 =

√
〈O2〉 − 〈O〉2 + 2R

M
, (46)

where R is the integral of the autocorrelation function A,
defined here as the difference between the expectation value
of the product of the observable value at the steps k and
k + h and its average 〈O〉2

A(h) ≡ E(O(k)O(k+h)) − 〈O〉2 . (47)

If the starting point is random, the autocorrelation func-
tion is independent of k and gives information about how
correlated are distant steps, namely how long the system
keeps memory of its past steps. As already mentioned, this
correlation between different steps arises from the finite
probability of rejecting transitions and vanishes only if all
proposed transitions are accepted, i.e. if (44) is fulfilled.
Therefore, the autocorrelation function is always positive
and vanishes only if different steps are independent. More-
over, the statistical error (46) is larger than in the case of
uncorrelated samples, where it reaches its minimum. The
number of steps needed to reduce A(h) to some small frac-
tion of 〈O〉2 is defined as autocorrelation time Tauto. Thus,
in order to minimize the statistical error on 〈O〉 in (46), one
should keep the autocorrelation time as small as possible.

The autocorrelation function and time depend only on
the updating rule, whilst the relaxation time Trel also de-
pends on how the initial state is chosen. In principle, the
relaxation time might be zero while the autocorrelation
time is not. When using the MPD both as proposal matrix
and to generate the starting point, these two quantities are
tightly related.
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Fig. 15. Autocorrelation function for the total primary multi-
plicity for a neutral cluster of 4 GeV mass at an energy density
of 0.4 GeV/fm3

The autocorrelation function can be estimated during
the Metropolis random walk by the sum

A(h) .=
∑M−Tauto

k=1 O(k)O(k+h)

M − Tauto
− 1

M2

(
M∑

k=1

O(k)

)2

, (48)

and it is shown in Fig. 15 for a cluster of 4 GeV with up-
dating rule based on the MPD.

Now the question arises whether the Metropolis al-
gorithm leads to more or less accurate computations of
mean values than the importance sampling method, for
given computing resources and using the same distribu-
tion Π{Nj} as proposal matrix and sampling distribution
respectively. This is studied in more detail in Sect. 7.4.

7 Study of the Metropolis algorithm

We have studied the capability of the Metropolis algo-
rithm as an event generator for the statistical model of
hadronization and as a computing tool for the hadron-gas
micro-canonical ensemble. As has been discussed in the
previous section, the benchmark for this algorithm is the
number of steps needed to reach equilibrium, or relaxation
time Trel, which must be kept to a minimum so as to draw
samples of the target distribution as quickly as possible.
Likewise, the autocorrelation time Tauto must be small in
order to minimize the statistical error (46) on the esti-
mate of mean values in single random walks. As has been
mentioned at the end of the previous section, these two
quantities are tightly related in our MPD-based scheme,
so we can confine ourselves to study Trel.

The relaxation time in principle depends on the physical
observable (average multiplicities, multiplicity distribution
etc.) and it is not easy to estimate in advance. Hence, in
practice, it must be determined a posteriori by analyzing
the convergence to equilibrium for the observable of in-
terest. For instance, if we ought to calculate the overall
multiplicity distribution Pn, we would have to study the
height of the nth bin, for all n’s, as a function of the step.
The height of the nth bin at the kth step, that is Pn(k),
can be estimated by repeating the Metropolis random walk
many times and averaging:

Pn(k) =
1
L

L∑
i=1

δn,ni(k) , (49)
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Fig. 16. Step histogram showing the convergence to equilibrium
of the probability P7 of a channel with seven primary hadrons
as a function of the step in a set of 500 000 Metropolis random
walks for a neutral cluster of 6 GeV with energy density of
0.4 GeV/fm3. The horizontal solid line indicates the P7 value
estimated with the importance sampling method and the dashed
band its relevant statistical uncertainty. The arrow points to
the equilibrium point determined through the WOSSR test
(see text)

where ni(k) is the actual multiplicity in the ith random
walk at the step k.

Establishing when a stable value of the examined ob-
servable is attained can be done by studying its average
over many Metropolis random walks, like (49) as a function
of the step, i.e. forming a histogram (the step histogram,
see Fig. 16) with Metropolis step numbers as bins and the
average of the observable (e.g. multiplicity) as bin content.
In all considered cases, the step histogram shows the same
general behavior, namely a tendency to an equilibrium
value after, possibly, a strong initial oscillation and fol-
lowed, sometimes, by very mild damped oscillations. Step
histograms show fluctuations around an apparent equilib-
rium value at some scale, as it can be seen in Figs. 16 and
17. The fluctuation pattern is determined by the inter-
play of finite statistics and possible dynamical oscillations
governed by the master equation (37). The amplitude of
statistical fluctuations is a function of the updating rule.

Because of these facts, providing a good quantitative
assessment of where stability is achieved is not straight-
forward. Were the statistics of Metropolis random walks
infinite, the criterion for stability would be fully deter-
ministic, that is, based on the relative difference between
asymptotic value (the true micro-canonical average) and
actual value from a given step onwards. On the other hand,
we can only deal with finite statistics, so the estimation of
a stability point (thence Trel) for a given observable can
be done statistically, thus it will be affected by some un-
certainty.

The statistical method we have chosen in order to assess
the convergence to equilibrium is based onanon-parametric
statistical test, the Wilcoxon one sample signed rank test

(WOSSR), that we will shortly describe in the following.
The WOSSR test is a non-parametric test, i.e. it does
not require the knowledge of the statistical distribution
of the sample, and the hypothesis under test (the null
hypothesis) is that a set of M independent random samples
{x1, . . . , xM}has a givenmedianXm. The only requirement
is that their distribution is symmetric. The test procedure
consists in sorting the absolute values of the differences
di = xi −Xm, ∀i, and giving them a rank, namely 1 to the
largest, 2 to the second largest and so on. If Xm is a good
median, the sum of the ranks of the positive differences is
expected to be close to the sum of the ranks of negative
differences. The test statistic is just the sum W of the ranks
of the positive differences and the test result is good when
W is close to half the sum of the first M integers, that is,
M(M + 1)/4.

We have used this method to study the convergence
to equilibrium in the Metropolis algorithm taking as ran-
dom samples a subset of M running bins (from the kth to
the (k + M)th) in the step histogram of the multiplicity
distribution Pn(k) (see Fig. 16). In fact, if equilibrium is
reached in the Metropolis random walk (as it is apparent
in the rightmost part of the histogram in Fig. 16), Pn(k) is
expected to evenly fluctuate around the asymptotic equilib-
rium value, whereas a net drift towards this value appears
when out of equilibrium (i.e. in the leftmost part of Fig. 16).
Therefore, provided that the distribution of fluctuations is
symmetric at equilibrium, the asymptotic value is likely to
be a good median for sets of Pn(k) with k = 1, . . . , M in the
equilibrium region and not in the drifting region. Accord-
ingly, the WOSSR test will yield a good confidence level
in the former case and a very small one in the latter. The
true asymptotic value is not known in practice and must
be estimated from the step histogram itself. A good choice
is the arithmetic mean of a set of histogram contents in the
rightmost region, where stability is apparently reached.

The non-parametric WOSSR test carried out on a set of
M running bins in the step histogram seems suitable for our
problem. In fact, we do not know the statistical distribution
of the random variable O(k) (i.e. the examined observable)
at each step for a given number L of random walks. On
the other hand, it is reasonable to assume that it is sym-
metric at equilibrium around the asymptotic value which
is one of the requirement of the WOSSR test. However,
this test also requires the independence of samples, which
is not the case here because subsequent steps in Metropolis
random walks are indeed correlated, as has been empha-
sized. Thus, the results of the WOSSR test in this context
should be taken with much care and could be misleading
if M � Tauto. If a large fluctuation from the equilibrium
value occurs at some point, its persistency in sign is fed by
the positive correlations of adjacent points, and this will
drive the test to failure even if equilibrium was actually
achieved. Conversely, it is quite unlikely that the test yields
a positive answer on a sufficiently large set of running bins
if equilibrium is not achieved, unless two accidentally large
fluctuations of equal time size arise. Therefore, albeit not
appropriate in principle, the WOSSR test with M ∼ Tauto
provides a fairly good indication of equilibrium.
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In order to actually define an equilibrium point, and
thereby a relaxation time Trel, we first calculate the arith-
metic mean of the rightmost 50 (which is of the same order
as of Tauto) bin contents, which is taken as median Xm

to be fed in the test. The WOSSR test is then performed
on subsets of M = 10 running bins in the step histogram
taking as starting bin the leftmost and moving rightward
by one bin at a time. The test is regarded as successful
if it yields a confidence level of at least 0.05 for a median
differing from the previously defined Xm at most by 0.5%.
If the test is successful for 10 starting bins in a row, the
first of those ten is taken to be the equilibrium point. Little
variation of the equilibrium point is found by changing the
number of running bins from 5 to 20.

Henceforth, we will use the observable overall multiplic-
ity and WOSSR test to point out some important features
of the Metropolis algorithm.

7.1 Dependence on the integration method

It has been shown in Sect. 4 that the importance sampling
integration method benefits from drawing samples in the
extended space of the variables

{N1, . . . , NK |r1, . . . , rN−1} , with N =
∑

j

Nj , (50)

instead of calculating the integral in the r’s for each chan-
nel {Nj} in (25) with a fixed (say 1000) number of Monte
Carlo samples. One could try to apply the same idea to the
Metropolis algorithm: instead of making a random walk in
the space of channels {Nj} and evaluating the weight of the
channel at each step by performing a Monte Carlo integra-
tion of Ω{Nj} in (25), samples can be drawn in the extended
space of the above variables and evaluating the integrand
function Ψ only one time at each step, thus saving CPU
time. However, the relaxation time Trel will be different in
these two cases and most likely longer in the extended space
sampling case. This can be easily understood if the single
Ψ evaluation is regarded as the extreme approximation of
the integral in the r’s in (25) with NS = 1. This is shown
indeed in Fig. 17: the convergence to the equilibrium speeds
up if the number of samples used to estimate the integral
in (25) increases. A serious drawback of the extended space
sampling, i.e. with NS = 1, is that the relaxation time may
become so long that many bins of the multiplicity distri-
bution look like having reached their stable asymptotic
value even when they actually still slowly drift towards
it. We have checked this for the case shown in Fig. 17 by
pushing the Metropolis random walk to 10000 steps, much
beyond the scale of the step histogram. It has been found
that even at such a large number of steps, the asymptotic
value, calculated independently with the importance sam-
pling method, is not attained, though the WOSSR test
yields a positive response, under most circumstances. This
finding indicates that the use of the Metropolis algorithm
requires more care than expected. At least a comparison
between the apparent asymptotic stable values with differ-
ent number of samplings or a cross-check with independent
calculations is necessary.
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Fig. 17. Step histogram showing the convergence to equilibrium
of the probability P6 of a channel with six primary hadrons as
a function of the step in a set of 500 000 Metropolis random
walks for different numbers of samples NS in the Monte Carlo
integration of the phase space volume of each channel Ω{Nj}
in (25). The horizontal solid line indicates the P6 value estimated
with the importance sampling method and the dashed band
its relevant statistical uncertainty. The cluster mass is 8 GeV,
the energy density 0.4 GeV/fm3 and the charges are free

7.2 Dependence on the updating rule

In order to show the effectiveness of the updating rule based
on randomly sampling the MPD, as discussed in Sect. 4,
we have compared it with a simpler updating rule based
on milder changes of the current configuration. This rule
is as follows.
(1) Three probabilities η0, η+ and η− are chosen such that
η0 + η+ + η− = 1.
(2) A random extraction (0, +,−) is made according to the
probability distribution defined by the η’s.
(3) Depending on whether the outcome is 0, +,− the overall
number of particles in the configuration is kept, is increased
by one unit or decreased by one unit respectively. In the
first case, a randomly chosen particle in the current con-
figuration is replaced with one having a mass just above or
below. In the second case, a new particle is randomly chosen
among all possible species. In the third case, a randomly
chosen particle of the current configuration is removed.

For this updating rule, the proposal matrix T (m → n)
has been determined and the optimal acceptance matrix
set accordingly (see (43)).

Indeed, this rule involves a slowing down of the con-
vergence to equilibrium because the fraction of rejected
transitions is much higher than in the MPD-based updat-
ing rule. This is apparent in Fig. 18 where the relevant
step histograms are shown for the multiplicity distribution
bin with 2 particles for a 2 GeV mass cluster. Whilst in
the MPD-based updating rule the equilibrium is achieved
within few tens of steps, in the above rule stability is not
achieved even after 3000 steps. Similar differences are found
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Fig. 18. Step histogram showing the convergence to equilibrium
of the probability P2 of channels with two hadrons as a function
of the step in a set of 100 000 Metropolis random walks for the
updating rule based on the MPD (bottom) and on a simpler
method described in the text (top). Solid lines indicate the true
value obtained by computing the phase space volume of all of
the channels. The cluster mass is 2 GeV, the energy density
0.4 GeV/fm3 and charges are free. The number of samples used
in the numerical integration of (25) was NS = 1000. For this
comparison, resonances have been kept at a fixed mass, and
quantum statistics terms in Ω{Nj} have been neglected

for heavier clusters. Therefore, the MPD-based updating
rule is much more efficient with regard to computing time.

7.3 Dependence on the cluster mass and charge

We have studied the dependence of Trel on the cluster mass
and charges, at constant energy density, by applying the
WOSSR tests to step histograms of multiplicity distribu-
tion Pn in different bins. For each mass and set of charges
we have taken the highest Trel among the bins for which
Pn > 10−3, as the relaxation time for that cluster. This
study has been carried out for completely neutral and pp-
like clusters; the energy density has been kept constant at
0.4 GeV/fm3. For each cluster 500 000 Metropolis random
walks (100 000 for M = 10 GeV) have been performed up
to 300 steps. The relaxation times are shown in Fig. 19.

This just defined relaxation time shows an initial in-
crease as a function of the cluster mass and drops thereafter
going from 8 to 10 GeV. For the present, we do not have
a complete understanding of this behavior. An increase
as a function of the mass is expected because the num-
ber of channels sampled from the MPD whose weight is
much larger than their correspoding micro-canonical one
increases owing to the persistence of the shape difference
between multiplicity distributions in the canonical and
micro-canonical ensemble (see Figs. 12 and 13), as already
mentioned in Sect. 5. The drop, as well as the observed dif-
ference between neutral and pp-like cluster, in the region
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Fig. 19. Relaxation times in a Metropolis random walk (see
text for the definition) as a function of mass and charges of
the cluster. The energy density is kept fixed at 0.4 GeV/fm3.
Lines are drawn to guide the eye

8–10 GeV might be a genuine effect due to a local minimal
distance between MPD and micro-canonical distributions
or an artefact of the cut on probability at 10−3. It is impor-
tant to remark that the relaxation times are not larger than
O(100) in the region where micro-canonical calculations are
necessary. In order to further improve Metropolis calcula-
tions, the same modification of the sampling distribution
put forward at the end of Sect. 4 to reduce statistical error
in the importance sampling, could be carried over here so
as to speed up the convergence to equilibrium.

7.4 Comparison with the importance sampling method

The performances of the importance sampling method and
the Metropolis algorithm have been compared by studying
the statistical error on the calculation of averages of sev-
eral observables with the same computing resources. For a
neutral cluster with 4 GeV mass and 0.4 GeV/fm3 energy
density, we have calculated the total average multiplicity
and the primary multiplicity distribution 100 times, each
time taking 100 000 steps in both methods. As the sam-
pled distribution at each step is the MPD in both cases,
the used CPU time is approximately the same. The func-
tion Ψ in (25) has been sampled one time per channel in
both methods.

As an example, we show in Fig. 20 the results obtained
for the estimate of the probability P5 of channels with five
primary hadrons. It can be seen that the Metropolis algo-
rithm gives rise to a broader statistical distribution of the
estimated values with respect to the importance sampling
method. Moreover, the distribution is not gaussian and it
is slightly asymmetric with also few cases of outranging es-
timates. On the other hand, the distributions for the total
average multiplicity look quite similar in the two methods.
It is worth pointing out that the a priori statistical error
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Fig. 20. Statistical distribution of the Monte Carlo estimates
of the probability P5 of channels with five primary hadrons,
for a neutral cluster with 4 GeV mass and 0.4 GeV/fm3 en-
ergy density

estimate obtained by using (18) for the importance sam-
pling method is about 0.008, in good agreement with the
found RMS of 0.0087 quoted in Fig. 20.

We have not investigated in much detail the sources
of such a different statistical resolution, but we surmise
that the ultimate reason of a larger error in the Metropolis
algorithm is the extra call to the random number gen-
erator which, at each step, is possibly needed to accept
or reject a proposed transition. Ultimately, this is an ad-
ditional source of fluctuations in the Metropolis random
walk which is absent in the importance sampling method
where each extracted configuration is simply reweighted.
Altogether, the importance sampling method seems to be
better performing in calculating averages in the micro-
canonical ensemble.

8 Conclusions

We have calculated averages in the micro-canonical ensem-
ble of the ideal hadron-resonance gas including all light-
flavored known resonances up to a mass of about 1.8 GeV.
We have found that micro-canonical average multiplicities
of different hadron species differ by less than 10% from
the corresponding canonical average (i.e. calculated by in-
troducing a temperature) for clusters with relatively low
mass, around 8 GeV, and energy density of 0.4 GeV/fm3.
This confirms and extends previous findings [8] obtained
with a restricted sample of hadron species. However, mul-
tiplicity distributions in the two ensembles show a clear
difference in shape which seem to persist in the thermo-
dynamical limit. Particularly, the dispersion of the total
multiplicity distribution is, to a great accuracy, 1/2 of the
Poisson dispersion in the large volume limit; presently, we

do not have any simple explanation of this fact and whether
this is linked to our special choice of the energy density.

A major point of this study is concerned with the nu-
merical methods developed to calculate micro-canonical
averages: an importance sampling method, which has been
proposed and used in this work for the first time, and a
previously proposed Metropolis algorithm [7], whose per-
formances have been improved by using as proposal ma-
trix Poisson distributions with mean values set as those
of the grand-canonical ensemble. They have been also em-
ployed as sampled distributions in the importance sam-
pling method.

The Metropolis algorithm is capable to provide single
samples of the micro-canonical ensemble with unit weight
and it is thus a suitable tool for event generation. Yet, it was
proved to be less accurate than the importance sampling
method for the calculation of averages for single clusters.
Moreover, the Metropolis algorithm used for event gener-
ation requires much care, particularly a preliminary study
of how fast the equilibrium condition is achieved. The con-
vergence to equilibrium may depend on the observable to
be analyzed and, more worrying, on the specific integration
methods used to evaluate the micro-canonical weights of
the channels.

However, the present study indicates that there is still
room for a further improvement of the efficiency of both
examined methods. An efficient way of calculating micro-
canonical ensemble opens the way to test the statistical
hadronization model at low energy and with respect to
many more observables than those considered as of yet.

Acknowledgements. We are grateful to J. Aichelin, T. Gab-
briellini, M. Gorenstein, A. Keränen, K. Werner for useful
discussions. This work has been carried out within the INFN
research project FI31.

A Calculation of the phase space integrals

Here we summarize a method to calculate phase space in-
tegrals due to Hagedorn [9]. The analytical calculation of Φ
in (12) can be carried out for two or three particles whilst for
more particles the expressions get rapidly so complicated
that a numerical computation is much more suitable.

For two particles:

Φ(M, m1, m2) =
4πp∗

T 2

ε1ε2
M

, (A.1)

where the mi are the masses, εi =
√

p∗2 + m2
i the ener-

gies, M the cluster’s mass, T the total available kinetic
energy and

p∗ =
1
2

[
M2 − 2(m2

1 + m2
2) +

1
M2 (m2

1 − m2
2)

2
] 1

2

. (A.2)

For N > 2 a function W of the momenta p1, . . . , pN is in-
troduced:
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Φ =
(4π)N

T 3N−4

∫ [ N∏
i=1

dpi p2
i

]
δ

(
M −

N∑
i=1

εi

)
W (p1, . . . , pN ) .

(A.3)
The function W reads

W (p1, . . . , pN ) =
1

(4π)N

∫ [
N∏

i=1

dΩi

]
δ3

(
N∑

i=1

pip̂i

)
,

(A.4)
where p̂i = pi/pi, and can be calculated explicitly:

W (p1, . . . , pN )

= − 1
2N+1π(N − 3)!p1 . . . pN

(A.5)

×
∑

{σ1...σN }
∑

σjpj≥0

σ1 . . . σN

(∑
i

σipi

)N−3

,

where σ can be either +1 or −1. This expansion involves
a large number of terms even at relatively small N , so it is
more advantageous, under some circumstances, to calculate
W differently. In fact, one can set in (A.4)

δ3

(
N∑

i=1

pip̂i

)
=

1
(2π)3

∫
d3u exp

[
−i

N∑
i=1

pip̂i · u
]

,

(A.6)
which leads to [7]

W (p1, . . . , pN ) =
1

2π2

∫ ∞

0
du u2

N∏
i=1

sin(piu)
piu

. (A.7)

Setting now y = uµ, where µ is an arbitrary energy scale,
to make the integration variable non-dimensional:

W (p1, . . . , pN )

=
1

2π2µ3

∫ ∞

0
dy y2

N∏
i=1

sin[(pi/µ)y]
(pi/µ)y

(A.8)

=
1

2π2µ3

∫ 1

0
dx

(1 − x)N−4

xN−2

N∏
i=1

sin
(

pi

µ
x

1−x

)
pi/µ

,

where the last expression has been obtained by using the
variable transformation y = x/(1 − x). The last integral
can be calculated numerically provided that the number
of particles is at least of the order of 10, otherwise the
integrand function features strong oscillations which make
most numerical integration methods failing. In this case,
it is compelling to calculate W by means of its full expan-
sion (A.5). However, the CPU time needed to sum all of the
terms rapidly grows with N , so that for N > 10 it is defi-
nitely preferrable to switch to the numerical computation
of the integral (A.8) (see also Fig. 2). The arbitrary scale µ
can be set so as to obtain a good resolution in the numerical
computation of W , and we have found that µ = 1 GeV is

Fig. 21. Tree diagram to calculate W with (A.5) for 4 particles

an appropriate choice for most cases at the energy densi-
ties we have been dealing with; if the number of momenta
larger than 100 MeV is ≤ 10, we set µ = 100 MeV.

In order to minimize the CPU time spent to calculate W
by using its full expansion (A.5) we have optimized the loop
over all combinations {σ1, . . . , σN} such that

∑
σjpj > 0

by considering only those which are relevant. The momenta
p1, . . . , pN are first sorted such that p1 > p2 > . . . > pH

and all possible Ntuples made of +1 or −1 are arranged in
a multi-level tree structure shown in Fig. 21 for the special
case N = 4. If, for some Ntuple at some level

∑H
j=1 σjpj ≤

0, the same is true for all Ntuples branching from it because
of momentum sorting and of the tree structure, which is
such that moving upwards one level a change in sign (+ →
−) occurs. Note that replica Ntuples in Fig. 21 are just
meant to show the tree structure, though they are in fact
not considered in the actual loop.

The phase space integral in (A.3) is now transformed by
means of a sequence of changes of integration variable [7]
pi → ti → si → xi → zi → ri. If the ti denote the particle
kinetic energies and T the total available kinetic energy:

pi =
√

ti(ti + 2mi) , i = 1, . . . , N ,

ti = si − si−1 , i = 1, . . . , N, with s0 = 0 and sn = T,

xi =
si

T
, i = 1, . . . , N − 1 ,

zi =
xi

xi+1
, i = 1, . . . , N − 1, with xN ≡ 1 ,

ri = zi
i , i = 1, . . . , N − 1 . (A.9)

As a result of this sequence of transformations, the Dirac
delta of energy conservation in (A.3) is integrated away
and the phase space integral reads

Φ =
∫ 1

0
dr1 . . .

∫ 1

0
drN−1Υ (r1, . . . , rN−1) , (A.10)
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where

Υ (r1, . . . , rN−1) =
(4π)NT 3−2N

(N − 1)!

N∏
i=1

piεiW (p1, . . . , pN ) .

(A.11)
and p1, . . . , pN are to be calculated by going along the
transformations (A.9) for a given set (r1, . . . , rN ). In the
form (A.10) Φ can be easily calculated by means of Monte
Carlo integration.

B Error estimates for importance sampling

We have defined the best estimate of the mean value of
the observable O in (17). This estimator can be viewed as
a random variable because the channels {Nj} are random
variables whose distribution is Π in (20). Let us introduce
the random variables Ω, O and Π taking values Ω{Nj},
O({Nj}) and Π{Nj} respectively for a particular channel
{Nj}. The following relations involving expectation val-
ues hold:

EΠ

(
Ω
Π

)
=
∑
{Nj}

Ω{Nj}
Π{Nj}

Π{Nj} = Ω , (B.1)

EΠ

(
O

Ω
Π

)
=
∑
{Nj}

O({Nj})
Ω{Nj}
Π{Nj}

Π{Nj} = Ω〈O〉 ,

where (3) and (10) have been used. We can now write the
estimator random variable 〈O〉 from (17) as

〈O〉 =

∑M
k=1 Ok

Ωk

Πk∑M
k=1

Ωk

Πk

. (B.2)

If the number of events M is large enough the numerator
and denominator in the right hand side are distributed in
a gaussian way according to the central limit theorem and
the variance σ2(〈O〉) can be calculated by using the error
propagation formula:

σ2(〈O〉) = σ2(N)
1

D2 +σ2(D)
N2

D4 −2cov(N,D)
N

D3 , (B.3)

where N and D are the numerator and the denominator
in (B.2), and N and D their expectation values EΠ(N) and
EΠ(D) respectively. Because of (B.1):

N ≡ EΠ(N) = MΩ〈O〉 , D ≡ EΠ(D) = MΩ . (B.4)

Thus, by using (B.4) and the general variance definitions,

σ(x) = E(x2) − E(x)2 ,

cov(x, y) = E(xy) − E(x)E(y) , (B.5)

we obtain

σ2(N)
1

D2 =
1

MΩ2

[
EΠ

(
O2 Ω2

Π2

)
− 〈O〉2Ω2

]
,

σ2(D)
N2

D4 =
〈O〉2
MΩ2

[
EΠ

(
Ω2

Π2

)
− Ω2

]
, (B.6)

cov(N,D)
N

D3 =
〈O〉

MΩ2

[
EΠ

(
O

Ω2

Π2

)
− 〈O〉Ω2

]
.

Therefore (B.3) can be rewritten as

σ2(〈O〉) =
1

MΩ2

{[
EΠ

(
O2 Ω2

Π2

)
− 〈O〉2Ω2

]

+〈O〉2
[
EΠ

(
Ω2

Π2

)
− Ω2

]

− 2〈O〉
[
EΠ

(
O

Ω2

Π2

)
− 〈O〉Ω2

]}
, (B.7)

which is essentially (18).
The estimator (17) is a biased one. This can be proved

writing (B.2) as 〈O〉 = N/D and

EΠ

(
N
D

)
= EΠ(N)EΠ

(
1
D

)
+ cov(N, 1/D) (B.8)

� EΠ(N)
[

1
EΠ(D)

+
σ2(D)

EΠ(D)3

]
− cov(N,D)

EΠ(D)2
,

using the definition of covariance and expanding the func-
tion 1/D around its mean value. The bias B of the estima-
tor (B.2) can then be written as

B ≡ EΠ(〈O〉) − 〈O〉 = EΠ

(
N
D

)
− 〈O〉

� 1
MΩ2

[
〈O〉EΠ

(
Ω2

Π2

)
− EΠ

(
O

Ω2

Π2

)]
, (B.9)

by using (B.9), (B.6) and (B.4).
Estimates of the bias (B.9) and the variance (B.7) can

be obtained by replacing in (B.7) the expectation values
with arithmetic means:

EΠ → 1
M

M∑
k=1

, (B.10)

while 〈O〉 can be estimated through (17) and the best
estimate of Ω is, according to (B.1),

Ω = EΠ

(
Ω
Π

)
.=

1
M

M∑
k=1

Ω
(k)
{Nj}

Π
(k)
{Nj}

. (B.11)

The estimator (17) could be corrected for the bias by sub-
tracting the estimate of (B.9). However, the bias (B.9)
is proportional to 1/M unlike the statistical error σ〈O〉
decreasing like 1/

√
M and, thus, becomes negligible with

respect to the statistical error for a large number of sam-
plings.
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C Multiplicity distribution
in the canonical ensemble

The multi-species multiplicity distribution in the canonical
ensemble with internal abelian charges Q can be obtained
from the generating function associated to the canonical
partition function Z(Q). The probability of a single state
in the canonical ensemble reads

Pstate =
1

Z(Q)
e−Estate/T δQstate,Q , (C.1)

and the generating function:

G(λ1, . . . , λK) =
1

Z(Q)

∑
states

e−Estate/T δQstate,Q

K∏
j=1

λ
Nj state
j ,

(C.2)
where K is the number of hadron species and Nj state the
number of hadrons of species j in the state. The generat-
ing function can be worked out by Fourier expanding the
Kronecker delta in (C.1) [5, 6]:

G(λ1, . . . , λK) =
1

Z(Q)
1

(2π)M
(C.3)

×
∫ π

−π
dMφ eiQ·φ exp


 K∑

j=1

(2Jj + 1)V
(2π)3

×
∫

d3p log(1 ± λje−
√

p2+m2
j/T−iqj ·φ)±1

]
,

where the upper sign applies to fermions, the lower
to bosons.

According to (C.1) and (C.2), the probability of a given
ntuple of hadrons {Nj}, that is the multi-species multi-
plicity distribution, can be obtained by integrating the
generating function over the unitary circle in the complex
λj planes:

P ({Nj}) =


 K∏

j=1

1
2πi

∮
dλj

λ
Nj

j


G(λ1, . . . , λK) . (C.4)

Plugging (C.3) in (C.4) and using the residual theorem,
one obtains

P ({Nj}) =
1
Z

1
(2π)M

∫ π

−π
dMφ eiQ·φ, (C.5)

×
K∏

j=1

1
Nj !

∂Nj

∂λ
Nj

j

exp


 ∞∑

nj=1

(∓1)nj+1 zj(nj)λ
nj

j

nj
e−nj iqj ·φ



∣∣∣∣∣
λ=0

,

where zj(n) is as in (35). Now the exponential in (C.5)
is expanded:

exp


 ∞∑

nj=1

(∓1)nj+1 zj(nj)λ
nj

j

nj
e−nj iqj ·φ


 (C.6)

=
∞∏

nj=1

exp

[
(∓1)nj+1 zj(nj)λ

nj

j

nj
e−nj iqj ·φ

]

=
∞∏

nj=1

∞∑
hnj

=0

(∓1)(nj+1)hnj

z
hnj

j(nj)
λ

njhnj

j

n
hnj

j hnj
!

e−njhnj
iqj ·φ

=
∞∑

hn1=0 ,

... ,
hnK

=0

∞∏
nj=1

(∓1)(nj+1)hnj

z
hnj

j(nj)
λ

njhnj

j

n
hnj

j hnj !
e−njhnj

iqj ·φ .

Taking the derivatives of the latter expression with respect
to the λj in λj = 0 according to (C.5), one is left with non-
vanishing terms in the above equation if

∑∞
nj=1 njhnj =

Nj . Therefore, the last series in (C.6) gives rise to

Nj !
∑

{hnj
}
(∓1)Nj+

∑
nj

hnj
z

∑
nj

hnj

j(nj)∏
nj

n
hnj

j hnj !
e−Nj iqj ·φ , (C.7)

where {hnj
} indicates the set of partitions (in the multi-

plicity representation) of the integers Nj , i.e. integers such
that

∑∞
nj=1 njhnj

= Nj . The nj and hj indices actually
run from 1 to Nj . Defining

∑
nj

hnj = Hj and restoring
the Kronecker delta, one can rewrite (C.5) by using the
expression of derivatives in (C.7) as

P ({Nj}) (C.8)

=
1

Z(Q)


 K∏

j=1

∑
{hnj

}

(∓1)Nj+Hj z
Hj

j(nj)∏
nj

n
hnj

j hnj
!


 δQ,

∑
j Njqj

,

which is (35).

D Error estimates for the Metropolis algorithm

An estimator of the mean value of the observable O in a M -
steps Metropolis random walk has been defined in (45). As
well as for the importance sampling method, this estimator
can be viewed as a random variable 〈O〉 and so the values
of the observables at each step O(k). Therefore

σ2(〈O〉) = E(〈O〉2)−〈O〉2 = E


(∑M

k=1 O(k)

M

)2

−〈O〉2 .

(D.1)
Thence

E


(∑M

k=1 O(k)

M

)2



=
1

M2

M∑
k=1

E(O(k)2) +
2

M2

∑
k<i

E(O(k)O(i))
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=
1
M

E(O2) +
2

M2

∑
k<i

E(O(k)O(i))

=
1
M

E(O2) +
2

M2

M∑
k=1

M−k∑
l=1

A(l) + 〈O〉2 , (D.2)

where A is the autocorrelation function. We can then write

E


(∑M

k=1 O(k)

M

)2

 (D.3)

=
E(O2)

M
+

M − 1
M

〈O〉2 +
2

M2

M∑
k=1

M−k∑
l=1

A(l) .

If M � Tauto, we can approximate the inner sum in (D.3)
with the integral of the autocorrelation function R de-
fined as

R =
∞∑

l=1

A(l) . (D.4)

and rewrite an approximate expression for (D.3) as

E


(∑M

k=1 O(k)

M

)2



� E(O2)
M

+
M − 1

M
〈O〉2 + 2

R

M
. (D.5)

Therefore, (D.1) becomes

σ2(〈O〉) =
〈O2〉 − 〈O〉2 + 2R

M
, (D.6)

which proves (46).
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